If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-12x=40
We move all terms to the left:
3x^2-12x-(40)=0
a = 3; b = -12; c = -40;
Δ = b2-4ac
Δ = -122-4·3·(-40)
Δ = 624
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{624}=\sqrt{16*39}=\sqrt{16}*\sqrt{39}=4\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{39}}{2*3}=\frac{12-4\sqrt{39}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{39}}{2*3}=\frac{12+4\sqrt{39}}{6} $
| 5/7x-4/3=3x-1/2 | | r−129=15 | | h+10=400 | | -3(x-14)=6x+42 | | n=104 | | 3(x-10)=27 | | x^2+4=-5 | | y+295=346 | | 5m-3=10 | | 2(v-10)=4 | | c+358=972 | | 25=d/5 | | 2n^2+4n=16 | | 24.8=2.5x | | -a=-25 | | 5x+5=(7x−6)/2 | | p−165=823 | | 6x4=18+ | | 2z+5=9;z= | | t+39=505 | | 7x+45=2x+115=180 | | 2x=+36+5 | | 31p=403 | | −1/2(6x−5)=1/3(12x−19/2x)+5/2 | | 20.x=1200 | | 3(-6v-6)=-2(6v+3) | | −12(6x−5)=13(12x−192x)+52A. | | 11/3-u=9/4 | | 19+23x=0 | | -8(p+31)=-8 | | b−5=−30 | | 17+b=29 |